Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 2.337
Filter
1.
Drug Repurposing for Emerging Infectious Diseases and Cancer ; : 543-568, 2023.
Article in English | Scopus | ID: covidwho-20244939

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic initiated by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has encouraged the repurposing of various drugs to treat the morbidity, mortality, and extent of the disease. Nowadays, the COVID-19 pandemic is a major health concern as it has already affected the whole world in all aspects. Drug repurposing is considered a new potential strategy as it is a cost-effective and less time-consuming process to establish a new indication for existing drugs. The present chapter has focused on the pathophysiology of COVID-19 and the reuse of the drugs based on pharmacological mechanisms. In the literature, various drugs like favipiravir, lopinavir, ritonavir, arbidol, chloroquine, hydroxychloroquine, interferons, etc. have been reported for repurposing purposes against COVID-19. Most of them are effective in in vitro and clinical studies. Drugs act mainly on viral entry, viral replication, angiotensin-converting enzyme-2 (ACE2), inflammatory mechanisms, etc. Based on viral pathogenesis and the mechanism of drugs using in silico, in vitro, and clinical studies, repurposing medicines might be considered an excellent opportunity to cure COVID-19. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023.

2.
Annals of the Rheumatic Diseases ; 82(Suppl 1):1870, 2023.
Article in English | ProQuest Central | ID: covidwho-20244935

ABSTRACT

BackgroundVaccination remains essential in preventing morbidity of SARS-CoV-2 infections. We previously showed that >10mg/day prednisolone and methotrexate use were associated with reduced antibody concentrations four weeks after primary vaccination in patients with giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) [1].ObjectivesHere, we performed a follow-up study to measure the decay of antibody concentrations over time and the immunogenicity of SARS-CoV-2 booster vaccination.MethodsGCA/PMR patients included in the primary vaccination (BNT162b2 or ChAdOx1) study were asked again to donate blood samples six months after primary vaccination (n=24) and one month after booster vaccination (n=46, BNT162b2 or mRNA1273). Data were compared to that of age-, sex-, and vaccine-matched controls (n=58 and n=42, respectively).ResultsAntibody concentrations decreased faster over time in GCA/PMR patients than in controls, but this decrease was not associated with treatment during primary vaccination. Post-booster antibody concentrations were comparable between patients and controls. Antibody concentrations post booster vaccination associated strongly with antibody concentrations post primary vaccination, but not with treatment during booster vaccination. However, the fold-change of post-booster vaccination showed a slight negative correlation with the post-primary vaccine antibodies.ConclusionThese results indicate that patients with impaired vaccine responses after primary vaccination, have slightly stronger increases in humoral immunity after booster vaccination, but this is not enough to reach a similar protection. The decrease in humoral immunity, and subsequent increase after booster vaccination, is likely not impacted by prednisolone or methotrexate treatment. Rather, these treatments put the patients at an immunogenic disadvantage during primary SARS-CoV-2 vaccination, which is not fully repaired by a single booster vaccination. This longitudinal study in GCA/PMR patients stresses the importance of repeat booster vaccination for patients that used >10mg/day prednisolone or methotrexate during primary vaccination.Reference[1]van Sleen Y, van der Geest, Kornelis SM, Reitsema RD, Esen I, Terpstra JH, Raveling-Eelsing E, et al. Humoral and cellular SARS-CoV-2 vaccine responses in patients with giant cell arteritis and polymyalgia rheumatica. RMD open 2022;8(2):e002479.Figure 1.Acknowledgements:NIL.Disclosure of InterestsYannick van Sleen: None declared, Kornelis van der Geest Speakers bureau: Speaker fees from Roche, Grant/research support from: Grant support from Abbvie, Annemarie Buisman: None declared, Maria Sandovici: None declared, Debbie van Baarle: None declared, Elisabeth Brouwer: None declared.

3.
Cambridge Prisms: Precision Medicine ; 1, 2023.
Article in English | ProQuest Central | ID: covidwho-20244873

ABSTRACT

Diabetes mellitus is prevalent worldwide and affects 1 in 10 adults. Despite the successful development of glucose-lowering drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 inhibitors recently, the proportion of patients achieving satisfactory glucose control has not risen as expected. The heterogeneity of diabetes determines that a one-size-fits-all strategy is not suitable for people with diabetes. Diabetes is undoubtedly more heterogeneous than the conventional subclassification, such as type 1, type 2, monogenic and gestational diabetes. The recent progress in genetics and epigenetics of diabetes has gradually unveiled the mechanisms underlying the heterogeneity of diabetes, and cluster analysis has shown promising results in the substratification of type 2 diabetes, which accounts for 95% of diabetic patients. More recently, the rapid development of sophisticated glucose monitoring and artificial intelligence technologies further enabled comprehensive consideration of the complex individual genetic and clinical information and might ultimately realize a precision diagnosis and treatment in diabetics.

4.
Annals of the Rheumatic Diseases ; 82(Suppl 1):148, 2023.
Article in English | ProQuest Central | ID: covidwho-20244727

ABSTRACT

BackgroundUpadacitinib (UPA) is an oral JAK inhibitor (JAKi) approved for the treatment of RA. JAKi have been associated with an elevated risk of herpes zoster (HZ) in patients (pts) with RA. The adjuvanted recombinant zoster vaccine (RZV, Shingrix) was shown to be well-tolerated and effective in preventing HZ in adults aged ≥ 50 years.[1] The efficacy and safety of RZV have not been studied in pts with RA while on UPA in combination with MTX.ObjectivesTo assess the immunogenicity of RZV in pts with RA receiving UPA 15 mg once daily (QD) with background MTX.MethodsEligible adults aged ≥ 50 years with RA enrolled in the ongoing SELECT-COMPARE phase 3 trial (NCT02629159) received two RZV doses, administered at the baseline and week (wk) 12 visits. Pts should have been on stable doses of UPA 15 mg QD and background MTX for ≥ 8 wks before the first vaccination and ≥ 4 wks after the second vaccination. Antibody titers were collected pre-vaccination (baseline), 4 wks post-dose 1 vaccination (wk 4), and 4 wks post-dose 2 vaccination (wk 16). The primary endpoint was the proportion of pts with a humoral response to RZV defined as ≥ 4-fold increase in pre-vaccination concentration of anti-glycoprotein E [gE] titer levels at wk 16. Secondary endpoints included humoral response to RZV at wk 4 and the geometric mean fold rise (GMFR) in anti-gE antibody levels at wks 4 and 16. Cell-mediated immunogenicity to RZV was an exploratory endpoint evaluated by the frequencies of gE-specific CD4+ [2+] T cells (CD4+ T cells expressing ≥ 2 of 4 activation markers: IFN-γ, IL-2, TNF-α, and CD40 ligand) measured by flow cytometry at wks 4 and 16 in a sub-cohort of pts.ResultsOf the 95 pts who received ≥ 1 RZV dose, 93 (98%) received both RZV doses. Pts had a mean (standard deviation) age of 62.4 (7.5) years. The median (range) disease duration was 11.7 (4.9–41.6) years and duration of UPA exposure was 3.9 (2.9–5.8) years. At baseline, all but 2 pts were receiving concomitant MTX and half (50%) were taking an oral corticosteroid (CS) at a median daily dose of 5.0 mg. One pt discontinued UPA by wk 16. Blood samples were available from 90/93 pts. Satisfactory humoral responses to RZV occurred in 64% (95% confidence interval [CI]: 55–74) of pts at wk 4 and 88% (81–95) at wk 16 (Figure 1). Age (50–< 65 years: 85% [95% CI: 75–94];≥ 65 years: 94% [85–100]) and concomitant CS (yes: 87% [77–97];no: 89% [80–98]) use at baseline did not affect humoral responses at wk 16. GMFR in anti-gE antibody levels compared with baseline values were observed at wks 4 (10.2 [95% CI: 7.3–14.3]) and 16 (22.6 [15.9–32.2]). Among the sub-cohort of pts, nearly two-thirds achieved a cell-mediated immune response to RZV (wk 4: n = 21/34, 62% [95% CI: 45–78];wk 16: n = 25/38;66% [51–81]). Within 30 days post-vaccination of either RZV dose, no serious adverse events (AEs) (Table 1) or HZ were reported. AEs that were possibly related to RZV were reported in 17% of pts. One death occurred more than 30 days after wk 16 due to COVID-19 pneumonia.ConclusionMore than three-quarters (88%) of pts with RA receiving UPA 15 mg QD on background MTX achieved a satisfactory humoral response to RZV at wk 16. In a subgroup of pts, two-thirds (66%) achieved a cell-mediated immune response to RZV at wk 16. Age and concomitant CS use did not negatively affect RZV response.Reference[1]Syed YY. Drugs Aging. 2018;35:1031–40.Table 1. Safety Results Through 30-Days Post-RZV Vaccination in UPA-Treated PatientsEvent, n (%)UPA 15 mg QD (N = 95)Any AE38 (40%)AE with reasonable possibility of being related to UPAa13 (14%)AE with reasonable possibility of being related to RZVa16 (17%)Severe AEb1 (1%)Serious AE0AE leading to discontinuation of UPA0Death0AE, adverse event;QD, once daily;RZV, adjuvanted recombinant zoster vaccine;UPA, upadacitinib.aAs assessed by the investigator.bHypersensitivity.AcknowledgementsAbbVie funded this study and participated in the study design, research, analysis, data collection, interpretation of data, review, and approval of the . All authors had access to relevant data and participated in the drafting, review, and approval of this publication. No honoraria or payments were made for authorship. Medical writing support was provided by Julia Zolotarjova, MSc, MWC, of AbbVie.Disclosure of InterestsKevin Winthrop Consultant of: AbbVie, AstraZeneca, BMS, Eli Lilly, Galapagos, Gilead, GSK, Novartis, Pfizer, Regeneron, Roche, Sanofi, and UCB, Grant/research support from: AbbVie, AstraZeneca, BMS, Eli Lilly, Galapagos, Gilead, GSK, Novartis, Pfizer, Regeneron, Roche, Sanofi, and UCB, Justin Klaff Shareholder of: AbbVie, Employee of: AbbVie, Yanxi Liu Shareholder of: AbbVie, Employee of: AbbVie, CONRADO GARCIA GARCIA: None declared, Eduardo Mysler Speakers bureau: AbbVie, Amgen, AstraZeneca, BMS, Eli Lilly, GlaxoSmithKline, Pfizer, Roche, and Sandoz, Consultant of: AbbVie, Amgen, AstraZeneca, BMS, Eli Lilly, GlaxoSmithKline, Pfizer, Roche, and Sandoz, Alvin F. Wells Consultant of: AbbVie, Amgen, BMS, Eli Lilly, Novartis, Pfizer, and Sanofi, Xianwei Bu Shareholder of: AbbVie, Employee of: AbbVie, Nasser Khan Shareholder of: AbbVie, Employee of: AbbVie, Michael Chen Shareholder of: AbbVie, Employee of: AbbVie, Heidi Camp Shareholder of: AbbVie, Employee of: AbbVie, Anthony Cunningham Consultant of: GSK, Merck Sharp & Dohme, and BioCSL/Sequirus.

5.
Applied Clinical Trials ; 31(3):6, 2022.
Article in English | ProQuest Central | ID: covidwho-20244570

ABSTRACT

Final Senate approval by a historically narrow 50-46 vote came only after the White House and Califf's supporters lobbied hard to gain sufficient support, a success that is very different from Califf's 89-4 approval back in 2016. Pressure to help control the high cost of prescription drugs will continue to drive FDA support for developing complex generic drugs and biosimilars. There is pressure to clarify rules governing e-cigarettes;a need to address serious health problems arising from contaminated food and seafood, including significant volumes of imported products;and the safety of cosmetic products, dietary supplements, sunscreens, and other non-prescription products raise additional complex issues.

6.
BMJ : British Medical Journal (Online) ; 369, 2020.
Article in English | ProQuest Central | ID: covidwho-20244305

ABSTRACT

Studies in mild-to-moderate cases as well as severe disease leave us still searching for a magic pill

7.
Annals of the Rheumatic Diseases ; 82(Suppl 1):361-362, 2023.
Article in English | ProQuest Central | ID: covidwho-20244142

ABSTRACT

BackgroundUpadacitinib (UPA), a Janus kinase inhibitor, was effective and well tolerated in patients (pts) with non-radiographic axial spondyloarthritis (nr-axSpA) through 14 weeks (wks) of treatment.[1]ObjectivesThis analysis assessed the efficacy and safety of UPA vs placebo (PBO) through 1 year.MethodsThe SELECT-AXIS 2 nr-axSpA study included a 52-wk randomized, double-blind, PBO-controlled period. Enrolled adults had a clinical diagnosis of active nr-axSpA fulfilling the 2009 ASAS classification criteria, objective signs of inflammation based on MRI sacroiliitis and/or elevated C-reactive protein, and an inadequate response to NSAIDs. One-third of pts had an inadequate response to biologic DMARDs. Pts were randomized 1:1 to UPA 15 mg once daily or PBO. Concomitant medications, including NSAIDs, had to be kept stable through wk 52. The study protocol outlined that pts who did not achieve ASAS20 at any two consecutive study visits between wks 24 to 52 should receive rescue therapy with NSAIDs, corticosteroids, conventional synthetic/biologic DMARDs, or analgesics. Cochran-Mantel-Haenszel (CMH) test with non-responder imputation incorporating multiple imputation (NRI-MI) was used to handle missing data and intercurrent events for binary efficacy endpoints. Mixed-effect model repeated measures (MMRM) was used to assess continuous efficacy endpoints. NRI was used for binary endpoints after rescue and as observed analysis excluding data after rescue for continuous endpoints. Treatment-emergent adverse events (TEAEs) are reported through wk 52.ResultsOf the 314 pts randomized, 259 (82%;UPA, n=130;PBO, n=129) completed wk 52 on study drug. More pts achieved an ASAS40 response with UPA vs PBO from wks 14 to 52 with a 20% treatment difference at wk 52 (63% vs 43%;nominal P <.001;Figure 1). The proportion of pts achieving ASDAS inactive disease with UPA remained higher than PBO at wk 52 (33% vs 11%;nominal P <.0001;Figure 1). Consistent improvements and maintenance of efficacy were also seen across other disease activity measures. Between wks 24 and 52, fewer pts on UPA (9%) than PBO (17%) received rescue therapy. A similar proportion of pts in each treatment group had a TEAE (Table 1). Infections were the most common TEAE;the rates of serious infections and herpes zoster were higher with UPA vs PBO, although no new serious infections were reported from wks 14 to 52. COVID-19 events were balanced between treatment groups. No opportunistic infections, malignancy excluding non-melanoma skin cancer, adjudicated major adverse cardiovascular events, inflammatory bowel disease, or deaths were reported. Two pts (1.3%) on PBO had adjudicated venous thromboembolic events.ConclusionUPA showed consistent improvement and maintenance of efficacy vs PBO through 1 year across multiple disease activity measures. No new safety risks were identified with longer-term UPA exposure. These results continue to support the benefit of UPA in pts with active nr-axSpA.Reference[1]Deodhar A, et al. Lancet. 2022;400(10349):369–379.Table 1.Safety through week 52Event, n (%)PBO (n = 157)UPA 15 mg QD (n = 156)Any AE103 (66%)107 (69%)Serious AE6 (3.8%)6 (3.8%)AE leading to D/C4 (2.5%)6 (3.8%)COVID-19-related AE22 (14%)24 (15%)Deaths00Infection60 (38%)68 (44%) Serious infection1 (0.6%)2 (1.3%) Herpes zoster1 (0.6%)5 (3.2%)Malignancy other than NMSC00NMSC1 (0.6%)0Hepatic disorder7 (4.5%)6 (3.8%)Neutropenia1 (0.6%)8 (5.1%)MACE (adjudicated)00VTE (adjudicated)2 (1.3%)a0Uveitisb3 (1.9%)2 (1.3%)Inflammatory bowel disease00aBoth patients had non-serious events of deep vein thrombosis in the lower limb with risk factors including obesity and prior deep vein thrombosis in one patient and concomitant COVID-19 infection in the other patient.bThree events of uveitis occurred in each treatment group (among n = 3 patients in the PBO group and n = 2 patients in the UPA group);two events in the PBO group and one in the UPA group occurred in patients with a history of uveitis.AcknowledgementsAbbVie funded this study and participated in the study design, res arch, analysis, data collection, interpretation of data, review, and approval of the . All authors had access to relevant data and participated in the drafting, review, and approval of this publication. No honoraria or payments were made for authorship. Medical writing support was provided by Julia Zolotarjova, MSc, MWC, of AbbVie.Disclosure of InterestsFilip van den Bosch Speakers bureau: AbbVie, Amgen, Galapagos, Janssen, Lilly, Merck, MoonLake, Novartis, Pfizer, and UCB., Consultant of: AbbVie, Amgen, Galapagos, Janssen, Lilly, Merck, MoonLake, Novartis, Pfizer, and UCB., Atul Deodhar Consultant of: AbbVie, Amgen, Aurinia, BMS, Celgene, GSK, Janssen, Lilly, MoonLake, Novartis, Pfizer, and UCB, Grant/research support from: AbbVie, Bristol Myers Squibb, Celgene, GSK, Lilly, Novartis, Pfizer, and UCB, Denis Poddubnyy Speakers bureau: AbbVie, Biocad, BMS, Galapagos, Gilead, GlaxoSmithKline, Janssen, Lilly, MSD, Medscape, MoonLake, Novartis, Peervoice, Pfizer, Roche, Samsung Bioepis, and UCB, Consultant of: AbbVie, Biocad, BMS, Galapagos, Gilead, GlaxoSmithKline, Janssen, Lilly, MSD, Medscape, MoonLake, Novartis, Peervoice, Pfizer, Roche, Samsung Bioepis, and UCB, Grant/research support from: AbbVie, Lilly, MSD, Novartis, and Pfizer., Walter P Maksymowych Consultant of: AbbVie, BMS, Celgene, Galapagos, Gilead, Janssen, Lilly, Novartis, Pfizer, and UCB, Grant/research support from: AbbVie, Novartis, Pfizer, and UCB, Employee of: Chief Medical Officer of CARE Arthritis Limited, Désirée van der Heijde Consultant of: AbbVie, Bayer, BMS, Cyxone, Eisai, Galapagos, Gilead, GSK, Janssen, Lilly, Novartis, Pfizer, and UCB, Employee of: Director of Imaging Rheumatology BV, Tae-Hwan Kim Speakers bureau: AbbVie, Celltrion, Kirin, Lilly, and Novartis., Mitsumasa Kishimoto Consultant of: AbbVie, Amgen, Asahi-Kasei Pharma, Astellas, Ayumi Pharma, BMS, Chugai, Daiichi Sankyo, Eisai, Gilead, Janssen, Lilly, Novartis, Ono Pharma, Pfizer, Tanabe-Mitsubishi, and UCB., Xenofon Baraliakos Speakers bureau: AbbVie, BMS, Celgene, Chugai, Merck, Novartis, Pfizer, and UCB, Consultant of: AbbVie, BMS, Chugai, MSD, Novartis, Pfizer, and UCB, Grant/research support from: AbbVie and Novartis, Yuanyuan Duan Shareholder of: AbbVie, Employee of: AbbVie, Kristin D'Silva Shareholder of: AbbVie, Employee of: AbbVie, Peter Wung Shareholder of: AbbVie, Employee of: AbbVie, In-Ho Song Shareholder of: AbbVie, Employee of: AbbVie.

8.
LC GC North America ; 39(6):291-292, 2021.
Article in English | ProQuest Central | ID: covidwho-20244058
9.
Pharmaceutical Technology Europe ; 34(7):9-10,12,14, 2022.
Article in English | ProQuest Central | ID: covidwho-20243767

ABSTRACT

According to market research, the pharmaceutical packaging sector is expected to grow at a compound annual rate of 7.4% between 2022 and 2031, reaching an estimated USS178.8 billion (€171.8 billion) by the end of the forecast period (1). "Pharmaceutical waste continues to be a huge problem, so to eliminate non-biodegradable and single-use plastics from the supply chain, more research is taking place around bio-based PET [polyethylene terephthalate]. "By designing a product's primary and secondary packaging well from the outset (including investing ample resources into the process), manufacturers can reduce the amount of materials used and wasted, test new eco materials, ensure safety compliance and efficacy, and benefit from cheaper transportation costs," Quelch surmises. [...]pharma companies can benefit from a packaging supplier with a true global footprint," he says.

10.
Pharmaceutical Technology Europe ; 33(5):8-11, 2021.
Article in English | ProQuest Central | ID: covidwho-20243759

ABSTRACT

According to Jens Kürten, group senior director, Communication and Marketing, Gerresheimer, there are nine megatrends that will both characterize and influence the pharmaceutical packaging market. Whether the drug be injected intravenously or subcutaneously, at home or in a hospital setting, there are various needs that should be considered prior to choosing the 'best-fit' packaging, he adds. [...]packaging requirements for pharmaceuticals change over time as the lifecycle of the drug continues," Stöcker states. [...]customers request more eco-friendly options to reduce or avoid plastic. [...]it has been necessary to design the packaging for the vaccines with these specific requirements in mind to ensure the safety and efficacy of the therapeutic product are protected.

11.
Pharmaceutical Technology Europe ; 33(3):44-45,48, 2021.
Article in English | ProQuest Central | ID: covidwho-20243755

ABSTRACT

[...]of the search for effective vaccines and treatments for COVID-19 being a priority, the development and manufacture of other treatments have been delayed, he adds. Through these industry collaborations, many developers have gained benefits, such as reduced time-to-market for new products, he specifies. [...]Quick believes that there will be more companies leaning towards outsourced services in the future, for development work and commercialization phases too. Given the disruption to the global pharmaceutical supply chain that has been experienced during the pandemic, O'Sullivan predicts that there will be opportunities for API suppliers in Europe, and elsewhere, to prosper from increased local demand, so long as the capacity and flexibility to deliver the required quantities are on available. [...]we will see significant investment by European API suppliers in expanded production capacity and capabilities in 2021 in order to attract Europe-based customers on the look-out for new local partners," he says. [...]Cruz emphasizes the rise of electronic health and customer records across Europe as an exciting prospect, particularly as it can lead to companies gaining a greater insight into treatments and customer needs.

12.
Pharmaceutical Technology Europe ; 33(10):22-22,24, 2021.
Article in English | ProQuest Central | ID: covidwho-20243754

ABSTRACT

[...]of the significant cost of development, companies seek to recoup finances through data exclusivity and patent protection of intellectual property, such as the drug product's formulation. Bio/pharma companies reformulate existing therapies for a whole host of reasons, such as treating underserved or neglected disease areas, improving patient adherence (particularly for target patient groups, such as paediatrics), reducing the potential of drug abuse, and providing alternative options in crisis situations-as has been apparent during the COVID-19 pandemic. Pentamidine is an anti-infective agent that can be used to treat an earlier stage of the disease;however, it is unable to penetrate the blood-brain barrier sufficiently to treat the secondary stage of HAT. [...]it was hypothesized that a combined pentamidine-Pluronic formulation may be a suitable approach to provide patients with a single therapeutic option for treatment of all stages of HAT. [...]it was concluded that the pharmacokinetic data attained supports the use of safety and tolerability data from the conventional risperidone formulation for further testing of VAL401 (4).

13.
Pharmaceutical Technology Europe ; 32(5):5, 2020.
Article in English | ProQuest Central | ID: covidwho-20243744

ABSTRACT

The French study that piqued interest in using hydroxychloroquine to treat COVID-19, by way of example, was not designed to the expected industry standard and, so despite being published (2), is now undergoing an additional independent peer review (3). Furthermore, studies demonstrating a contrary opinion-that chloroquine and hydroxychloroquine do not have a suitable risk-to-benefit ratio in terms of COVID-19 treatment-also have limitations. Bill & Melinda Gates Foundation, "COVID-19 Therapeutics Accelerator Awards $20 Million in Initial Grants to Fund Clinical Trials," gatesfoundation.org, Press Release, 30 March 2020.

14.
Annals of the Rheumatic Diseases ; 82(Suppl 1):1764-1765, 2023.
Article in English | ProQuest Central | ID: covidwho-20243710

ABSTRACT

BackgroundDeucravacitinib is a first-in-class, oral, selective, allosteric tyrosine kinase 2 (TYK2) inhibitor approved in multiple countries for the treatment of adults with plaque psoriasis. Deucravacitinib suppresses signaling of cytokines involved in the pathogenesis of immune-mediated diseases including psoriasis, psoriatic arthritis, and systemic lupus erythematosus. Deucravacitinib was efficacious compared with placebo in phase 2 trials in psoriatic arthritis and systemic lupus erythematosus.[1,2] In two phase 3 trials in patients with moderate to severe plaque psoriasis (POETYK PSO-1 [NCT03624127], PSO-2 [NCT03611751]), deucravacitinib showed superior efficacy versus placebo and apremilast.[3,4] Upon completion of either psoriasis trial, patients could enroll in the POETYK long-term extension (LTE) trial (NCT04036435).ObjectivesTo evaluate the incidence rate and severity of adverse events (AEs) due to COVID-19 with deucravacitinib treatment in the POETYK PSO-1 and POETYK PSO-2 trials and open-label POETYK LTE trial.MethodsIn PSO-1 (N=666) and PSO-2 (N=1020), adult patients with moderate to severe plaque psoriasis were randomized 2:1:1 to deucravacitinib 6 mg once daily, placebo, or apremilast 30 mg twice daily. At Week 16, placebo patients in both trials switched to deucravacitinib. Based on their Week 24 PASI response, apremilast patients continued with apremilast or switched to placebo or deucravacitinib. In PSO-1, patients randomized to deucravacitinib continued treatment for 52 weeks;in PSO-2, some patients randomized to deucravacitinib had a randomized treatment withdrawal period. At Week 52, patients could enroll in the open-label LTE and receive deucravacitinib. Incidence rates and severity of COVID-19–related AEs in the POETYK trials (n=1364;2076.7 person-years [PY] of follow-up) were compared with the Janssen/Johnson & Johnson COVID-19 vaccine trial placebo group (n=19,544;3096.1 PY of follow-up). This reference population was selected due to the study design and timing of the trial, which occurred when variants were in circulation.ResultsAs of October 1, 2021, 1519 patients received ≥1 dose of deucravacitinib over a 2-year follow-up period;1364 patients met criteria for this analysis, with deucravacitinib exposure since the pandemic onset (estimated to be January 1, 2020). In total, 153 deucravacitinib patients reported a COVID-19–related AE, for an overall exposure-adjusted incidence rate (EAIR) of 7.4/100 PY (95% CI, 6.2–8.6). Serious COVID-19–related AEs occurred in 43 patients (EAIR, 2.1/100 PY;95% CI, 1.5–2.8), including 30 with COVID-19 and 13 with COVID-19 pneumonia;this rate was within the margins of those for moderate to severe COVID-19 reported in the reference population (EAIR, 16.5/100 PY;95% CI, 15.0–17.9). Deaths due to COVID-19 occurred in 6 patients (EAIR, 0.3/100 PY;95% CI, 0.1–0.6), with the COVID-19–related mortality rate being consistent with the reference population (EAIR, 0.23/100 PY;95% CI, 0.1–0.5). Treatment was discontinued due to COVID-19 or COVID-19 pneumonia in 7 patients, including the 6 patients who died due to COVID-19.ConclusionCOVID-19 was among the most frequently reported AEs during the 2-year period of the pooled PSO-1, PSO-2, and LTE trials due to the temporal overlap of the pandemic with the trials. However, COVID-19 infection and death rates did not differ from the reference population;most infections were not serious and did not lead to treatment discontinuation. Based on this analysis, deucravacitinib did not appear to increase the risk of COVID-19 nor its progression to severe outcomes.References[1]Mease PJ, et al. Ann Rheum Dis. 2022;81:815-822.[2]Morand E, et al. Arthritis Rheumatol. 2022;Nov 11 (Epub ahead of print).[3]Armstrong A, et al. J Am Acad Dermatol. 2022;S0190-9622(22)02256-3.[4]Strober B, et al. J Am Acad Dermatol. 2022;S0190-9622(22)02643-3.AcknowledgementsThese clinical trials were sponsored by Bristol Myers Squibb.Disclosure of InterestsDiamant Thaçi Speakers bureau: AbbVie, Almirall, Amgen, Biogen Idec, Boeh inger Ingelheim, Bristol Myers Squibb, Eli Lilly, Galapagos, Galderma, Janssen-Cilag, Leo Pharma, Novartis, Pfizer, Regeneron, Roche, Sandoz-Hexal, Sanofi, Target Solution, and UCB, Consultant of: AbbVie, Almirall, Amgen, Biogen Idec, Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly, Galapagos, Galderma, Janssen-Cilag, Leo Pharma, Novartis, Pfizer, Regeneron, Roche, Sandoz-Hexal, Sanofi, Target Solution, and UCB, Grant/research support from: AbbVie, Almirall, Amgen, Biogen Idec, Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly, Galapagos, Galderma, Janssen-Cilag, Leo Pharma, Novartis, Pfizer, Regeneron, Roche, Sandoz-Hexal, Sanofi, Target Solution, and UCB, Kenneth B Gordon Consultant of: Amgen, Almirall, Dermira, Leo Pharma, Pfizer, and Sun Pharma, Grant/research support from: Amgen, Almirall, Dermira, Leo Pharma, Pfizer, and Sun Pharma, AbbVie, Boehringer Ingelheim, Bristol Myers Squibb, Celgene, Eli Lilly, Janssen, Novartis, and UCB, Melinda Gooderham Speakers bureau: Glenmark, Actelion, AbbVie, Galderma, Leo Pharma, Pfizer, and Regeneron, Amgen, Boehringer Ingelheim, Celgene, Eli Lilly, Janssen, Novartis, Sanofi Genzyme, and Valeant, Consultant of: Amgen, Boehringer Ingelheim, Celgene, Eli Lilly, Janssen, Novartis, Sanofi Genzyme, and Valeant, Andrew Alexis Speakers bureau: Pfizer, Regeneron, and Sanofi Genzyme, Consultant of: AbbVie, Allergan, Almirall, Amgen, Arcutis, AstraZeneca, Bausch Health, Beiersdorf, Bristol Myers Squibb, Dermavant, Galderma, Janssen, Leo Pharma, L'Oreal, Pfizer, Sanofi-Regeneron, Sol-Gel, UCB, Valeant, VisualDx, and Vyne, Grant/research support from: Almirall, Amgen, Arcutis, Bristol Myers Squibb, Cara, Galderma, Leo Pharma, Menlo, Novartis, and Valeant (Bausch Health), Varsha Lalchandani Shareholder of: Bristol Myers Squibb, Employee of: Bristol Myers Squibb, Julie Scotto Shareholder of: Bristol Myers Squibb, Employee of: Bristol Myers Squibb, Lauren Hippeli Shareholder of: Bristol Myers Squibb, Employee of: Bristol Myers Squibb, Matthew J Colombo Shareholder of: Bristol Myers Squibb, Employee of: Bristol Myers Squibb, Subhashis Banerjee Shareholder of: Bristol Myers Squibb, Employee of: Bristol Myers Squibb, Tamara Lezhava Shareholder of: Bristol Myers Squibb, Employee of: Bristol Myers Squibb, Mark Lebwohl Consultant of: Aditum Bio, Almirall, AltruBio, AnaptysBio, Arcutis, Arena, Aristea, Arrive Technologies, Avotres, BiomX, Boehringer Ingelheim, Brickell Biotech, Bristol Myers Squibb, Cara, Castle Biosciences, CorEvitas' (Corrona) Psoriasis Registry, Dermavant, Dr. Reddy's Laboratories, Evelo Biosciences, Evommune, Forte Biosciences, Helsinn Therapeutics, Hexima, Leo Pharma, Meiji Seika Pharma, Mindera, Pfizer, Seanergy, and Verrica, Grant/research support from: AbbVie, Amgen, Arcutis, Avotres, Boehringer Ingelheim, Dermavant, Eli Lilly, Incyte, Janssen, Ortho Dermatologics, Regeneron, and UCB.

15.
Pharmaceutical Technology Europe ; 34(9):9-12, 2022.
Article in English | ProQuest Central | ID: covidwho-20243212

ABSTRACT

Recognizing reality, Uwe Schoenbeck, PhD, senior vice president and chief scientific officer for Emerging Science & Innovation (ES&I) at Pfizer, has synthesized and made functional core lessons from two of the past decade's best business books: According to Schoenbeck, ESLs are highly experienced in the relevant disease area and embedded within the respective therapeutic areas, resulting in high strategic alignment of the opportunity being sourced and avoiding opportunities that are not a strategic fit (1). The ES&I team, in conjunction with colleagues working in Business Development, has stood out for bringing genuinely creative partnership ideas and innovations into an already creative and crowded environment. [...]a collaboration with Codex DNA will potentially streamline the mRNA production process by facilitating synthetic DNA assembly, another notable fruit of the team's labour to bring forth a competitive pipeline in gene therapy.

16.
2023 3rd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, ICAECT 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20242769

ABSTRACT

Monkeypox is a skin disease that spreadsfrom animals to people and then people to people, the class of the monkeypox is zoonotic and its genus are othopoxvirus. There is no special treatment for monkeypox but the monkeypox and smallpox symptoms are almost similar, so the antiviral drug developed for prevent from smallpox virus may be used for monkeypox Infected person, the Prevention of monkeypox is just like COVID-19 proper hand wash, Smallpox vaccine, keep away from infected person, used PPE kits. In this paper Deep learning is use for detection of monkeypox with the help of CNN model, The Original Images contains a total number of 228 images, 102 belongs to the Monkeypox class and the remaining 126 represents the normal. But in deep learning greater amount of data required, data augmentation is also applied on it after this the total number of images are 3192. A variety of optimizers have been used to find out the best result in this paper, a comparison is usedbased on Loss, Accuracy, AUC, F1 score, Validation loss, Validation accuracy, validation AUC, Validation F1 score of each optimizer. after comparing alloptimizer, the Adam optimizer gives the best result its total testing accuracy is 92.21%, total number of epochs used for testing is 100. With the help of deep learning model Doctors are easily detect the monkeypox virus with the single image of infected person. © 2023 IEEE.

17.
Advances in Health and Disease Volume 67 ; : 45-70, 2023.
Article in English | Scopus | ID: covidwho-20242713

ABSTRACT

The World Health Organization (WHO) declared an international public health concern on January 30, 2020, in response to the idiopathic Coronavirus disease 2019 (COVID-19) pandemic outbreak. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of the disease being identified as the third human Coronavirus, was discovered in Wuhan, Hubei Province, China. Coronavirus belongs to the Coronaviridae family, Coronavirinae subfamily which according to their genetic structures, are grouped into alphaCoronavirus (aCoV), betaCoronavirus (bCoV), gamma Corona¬virus (yCoV) and deltaCoronavirus (dCoV) of order Nidovirales. Coronaviruses are enveloped, positive-sense, single-stranded RNA viruses invading a wide variety of host species. SARS-CoV-2 belongs to extensively. Angiotensin¬converting enzyme 2 (ACE2) is imperative for Novel SARS-CoV-2 to enter host cells as a substrate receptor. With a high mortality rate in the elderly, immune-compromised, diabetic, and patients with cardiovascular and respiratory diseases, COVID-19 is an extremely contagious disease. Patients who are afflicted experience fever, a nonproductive cough, lethargy, dyspnea, and occasionally diarrhoea as well as radiographic signs of pneumonia. A cytokine storm is a result of the immune system's aggressive response to a virus that has propagated inside the body. Genetic recombination and mutation are the main drivers of the emergence of novel SARS-CoV-2 variants. Variants of concern (VOCs) are used to describe some variants having significant virulence and transmission rates, such as the Omicron variants now. RT-LAMP, RT- qPCR, and High-Resolution Computed Tomography, among other new cutting-edge techniques, are effective at diagnosing SARS-CoV-2 infected patients. Standard treatments involving compounds like Lopinavir/Ritonavir, paxlovid, and molnupiravir have shown to be efficacious to some extent against even the newly emerging strains when it comes to treatment approaches. Additionally, immunization is a crucial strategy for preventing the disease or lessening its impact. Live attenuated vaccines, DNA- and RNA-based vaccines, protein subunit vaccines, and amplifying viral vector vaccines are among the molecular frameworks used in the production of vaccines against SARS-CoV-2. Comirnaty by Pfizer-BioNTech, SpikeVax by Moderna, and Vaxzevria by Oxford- AstraZeneca are three extensively incorporated and validated COVID-19 vaccines. In a similar vein, a variety of vaccinations have been created with varying degrees of potency against VOCs. Nanotechnology and artificial intelligence (AI) advancements may help in the provision of an effective and dependable remedy for the eradication of SARS-CoV-2. Definitive diagnosis, community engagements, and united scientific approaches have effectively addressed public health issues amid the pandemic. Although COVID-19 has presented a significant challenge to the healthcare system, it has also provided a chance for the development of novel and creative roles that could have significant effects on the healthcare system. This pandemic has highlighted the value of prompt diagnosis, the value of universal healthcare as well as the need for cutting-edge methods to contain pandemics around the world. © 2023 Nova Science Publishers, Inc. All rights reserved.

18.
Annals of the Rheumatic Diseases ; 82(Suppl 1):1897-1898, 2023.
Article in English | ProQuest Central | ID: covidwho-20242556

ABSTRACT

BackgroundAcetaminophen (APAP = paracetamol) may potentially impact vaccine-associated immune responses as the intake of APAP has been associated with a worse outcome in tumor patients receiving checkpoint inhibitors.[1]Different DMARD regimen have been shown to impair the humoral immune response to mRNA SARS-CoV-2 vaccines in patients with rheumatoid arthritis but the effect of paracetamol has not been explored thus far.ObjectivesTo analyse whether the intake of APAP may interfere with antiviral humoral immune responses following two doses of an anti-SARS-CoV-2 mRNA based vaccine in patients with rheumatoid arthritis (RA) on DMARD therapy.MethodsThe RECOVER trial (Rheumatoid Covid-19 Vaccine Immune Response) was a non-randomised, prospective observational control group trial and enrolled 77 RA patients on DMARD therapy and 21 healthy controls (HC). We performed a posthoc analysis of blood samples taken before the first vaccine dose (T0), two (T1) and three (T2) weeks after the first and second vaccine dose, and at 12 (T3) weeks. APAP intake was measured using ELISA. The antibody response (anti-S) to the receptor binding domain (RBD) within the SARS-CoV-2 S1 protein was measured with the Elecsys Anti-SARS-CoV-2-S (Roche Diagnostics GmbH) test. The neutralizing activity NT50 at week 12 was assessed using an HIV-based pseudovirus neutralization assay against Wuhan-Hu-1.ResultsBaseline characteristics of participants are detailed in Table 1. The immunogenicity analyses were based on 73 RA patients after exclusion of 4 patients with previously unnoticed SARS-CoV-2 infection (positive for anti-nucleoprotein at baseline). APAP was detected in serum samples from 34/73 (25%) RA patients and in 7/21 (33%) HC (least at one timepoint T0, T1 and/or T2). APAP intake in HC did not affect levels of anti-S at any timepoint and all HC developed potent neutralizing activity (NT50 ≥ 250) at week 12. RA patients, who tested positive for APAP at T1, showed comparable anti-S levels at T1, T2 and T3 compared to RA patients not exposed to APAP. The detection of APAP at T2 corresponded to lower anti-S levels at T2 (Figure 1 A, B). The detection of APAP at T2 was associated with a significantly lower SARS-CoV-2 neutralizing activity at week 12 compared to patients without perivaccination APAP exposure (p =0.04) (Figure 1 C).ConclusionA decrease of antiviral humoral immune responses was observed in RA patients (but not in HC) who were exposed to APAP at the time of the second mRNA vaccine dose compared to patients in whom APAP was not detected. Our data suggest that the use of paracetamol within the time period around vaccination may impair vaccine-induced immune responses in patients with an already higher risk for blunted immune responses.Reference[1]Bessede A et al. Ann Oncol 2022;33: 909-915Table 1.Baseline characteristics: RA patients and HC with/without APAP exposureRA APAP – n = 37RA APAP + n = 36p-valueHC APAP – n = 8HC APAP + n = 13p-valueAge (yrs), mean (± SD)62 (13)67 (10)0.07 (NS)45 (12)44 (14)0.90 (NS)Female sex, n (%)24 (65)19 (53)0.29 (NS)2 (25)5 (38)0.53 (NS)Vaccination type/schedulemRNA-1273, n (%)4 (11)8 (22.2)0.19 (NS)0 (0)0 (0)BNT162b2, n (%)33 (89)28 (77.8)0.19 (NS)8 (100)13 (100)RA disease characteristicsACPA ± RF, n (%)17/37 (46)19/36 (53)0.56 (NS)NANANARA disease duration (yrs ± SD)9.2 (9.8)10.2 (8.1)0.67 (NS)NANANADMARD therapycsDMARD-mono, n (%)13/37 (35)9/36 (25)0.35 (NS)NANANAbDMARD-mono/combo, n (%)16/37 (43)16/36 (44)0.92 (NS)NANANAtsDMARDs-mono/combo, n (%)8/37 (22)11/36 (31)0.38 (NS)NANANAPrednisone, n (%)15/37 (41)12/36 (33.3)0.52 (NS)NANANAMean daily dose prednisone (mg ± SD)4.6 ± 1.13.9 ± 2.30.39 (NS)NANANA* APAP = acetaminophenFigure 1.Acknowledgements:NIL.Disclosure of InterestsNone Declared.

20.
Annals of the Rheumatic Diseases ; 82(Suppl 1):374-375, 2023.
Article in English | ProQuest Central | ID: covidwho-20241840

ABSTRACT

BackgroundAlthough studies have quantified adherence to medications among patients with rheumatic diseases (RD) during the COVID-19, lack of direct pre-pandemic comparison precludes understanding of impact of the pandemic.ObjectivesOur objective was to evaluate the effect of the COVID-19 pandemic on adherence to disease modifying drugs (DMARDs) including conventional synthetic (csDMARDs) and targeted synthetic (tsDMARDs).MethodsWe linked population-based health data on all physician visits, hospital admissions, and all dispensed medications, regardless of payer in British Columbia from 01/01/1996 to 3/31/2021. We identified prescriptions for csDMARDs (including methotrexate, hydroxychloroquine) and tsDMARDs, namely anti-TNFs (including infliximab, etanercept, adalimumab) and rituximab using drug identification numbers among indicated individuals with RD. We defined March 11, 2020, as the ‘index date' which corresponded to the date that mitigation measures for the COVID-19 pandemic were first introduced. We assessed adherence as proportion days covered (PDC), calculated monthly in the 12 months before and 12 months after the index date. We used interrupted time-series models, namely segmented regression to estimate changes and trends in adherence before and after the index date.ResultsOur analysis showed that the mean PDCs for all included DMARDs stayed relatively steady in the 12 months before and after mitigation measures were introduced (see Table 1). Adherence was highest among anti-TNFs, methotrexate, and azathioprine. Anti-TNFs were on a downward trajectory 12 months prior to the index date. Interrupted time-series modeling demonstrated statistically significant differences in the trends in PDCs post- vs. pre-mitigation measures for all anti-TNFS (slope [∂]: 1.38, standard error [SE]: 0.23), infliximab (∂: 1.35, SE: 0.23), adalimumab (∂: 0.82, SE: 0.25), and etanercept (∂: 1.07, SE: 0.25) (see Figure 1a). Conversely, the csDMARDs were on a flatter trajectory, and methotrexate (∂: -0.53, SE: 0.16), leflunomide (∂: 0.43, SE: 0.08), mycophenolate (∂: -1.26, SE: 0.48), cyclophosphamide (∂: 0.29, SE: 0.05), minocycline (∂: 0.04, SE: 0.02), chloroquine (∂: 0.02, SE: 0.00) showed statistically significant changes in estimated PDC trajectory after mitigation measures were introduced (see Figure 1b).ConclusionThis population-based study demonstrates that messaging and pandemic mitigation measures did not affect adherence to DMARDs.Table 1.Mean PDC 1 year before and after mitigation measures for the COVID-19 pandemic were introduced.MedicationMean PDC (%) 12 months before index dateMean PDC (%) 12 months after index datecsDMARDsmethotrexate28.926.8azathioprine21.819.5sulfasalazine16.214.9leflunomide14.313.0cyclosporine13.711.5hydroxychloroquine10.59.6mycophenolate4.52.9antimalarials4.43.9penicillamine3.53.4cyclophosphamide1.50.7chlorambucil1.20.4minocycline1.10.9gold0.50.2chloroquine0.10.0tsDMARDsanti-TNFs52.149.2infliximab41.838.3adalimumab40.336.8etanercept31.828.9rituximab3.42.9REFERENCES:NIL.Acknowledgements:NIL.Disclosure of InterestsNone Declared.

SELECTION OF CITATIONS
SEARCH DETAIL